Publications

Posterior Inference on Shallow Infinitely Wide Bayesian Neural Networks under Weights with Unbounded Variance

We propose a method to do posterior inference on neural networks that are infinitely wide, using priors that have unbounded variance.

Recommended citation: Loría, J, Bhadra, A. (2024). "Posterior Inference on Shallow Infinitely Wide Bayesian Neural Networks under Weights with Unbounded Variance ." (to appear) 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024). https://openreview.net/forum?id=J97bdMR7Lv

SURE-tuned Bridge Regression

Bridge is a regularization technique that can consume a lot of time when the number of covariates is much larger than the number of observations. We propose a non-iterative method to reduce this timing without losing statistical prediction power.

Recommended citation: Loria, J, Bhadra, A. (2024). "SURE-tuned Bridge Regression." Statistics and Computing 34, 30. https://link.springer.com/article/10.1007/s11222-023-10350-z

Demographic Modeling via 3-dimensional Markov Chains

We propose a new model for understanding and prediction of demographic modeling, using Markov Chains. We apply it to an institution in Costa Rica.

Recommended citation: Víquez, J. J., Víquez, J. A., Campos, A., Loría, J., & Mendoza, L. A. (2018). Modelación de poblaciones vía cadenas de Markov tridimensionales. Revista De Matemática: Teoría Y Aplicaciones, 25(2), 185–214. https://doi.org/10.15517/rmta.v25i2.33608. https://revistas.ucr.ac.cr/index.php/matematica/article/view/33608/34172